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In recent years a new paradigm has emerged in linear stability theory due to the
recognition of the importance of non-normality in the Orr–Sommerfeld equation as
derived from the method of normal modes. For single-fluid flows it has been shown
that it is possible for the kinetic energy of certain stable mode combinations to grow
transiently before decaying to zero. We look again at the linear stability of two-fluid
plane Poiseuille flow in two dimensions, concentrating on transient growth and its
dependence on the viscosity and depth ratio. The procedure is to solve the stability
equations numerically and consider disturbances defined as a sum of the least stable
eigenmodes (not just the least stable interfacial mode). It is found that the variational
method used to find maximum growth cannot be based upon the kinetic energy
of the flow only and that interface deflection must be included in the formulation.
We show which modes are necessary for inclusion in the disturbance expression and
find that the interfacial mode does not make a significant contribution to possible
energy growth. We examine the magnitude of maximum growth and the nature of
the disturbances that lead to this growth. The linear energy rate equation shows that
at moderate Reynolds numbers the mechanism responsible for the largest two-fluid
growth is transfer of energy from the basic flow via the Reynolds stresses. The energy
transfer is facilitated by streamline tilting that can be seen at the channel walls or at
the interface. A similar effect has been found in single-fluid plane Poiseuille flow.

1. Introduction
Hydrodynamic stability studies of shear flows of two superposed fluids have con-

centrated on the behaviour of the interfacial mode. This mode is due to the presence
of the interface and in flow configurations in which gravity is absent or acts parallel
to the interface, its behaviour is governed both by the viscosity and/or density jump
across the interface and the proximity of the boundary walls. The stability equations
for two-fluid flows admit an infinite number of discrete eigenvalues and eigenmodes
and the interfacial mode is usually the leading eigenmode. Linear stability studies have
concentrated on the determination of the eigenvalue of the interfacial mode and non-
linear studies have looked at the reaction of the interfacial mode to finite-amplitude
effects.

Recent linear stability studies of single-fluid shear flows have questioned the validity
of considering the leading eigenmode and its growth rate in isolation from the
remainder of the spectrum of eigenmodes, see Trefethen et al. (1993), Reddy &
Henningson (1993), Farrell (1988), Butler & Farrell (1992). They show that even
though the leading eigenmode is stable, linear growth can still occur which results in
energy growth of O(10) for two-dimensional disturbances. The growth is due to the
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non-normality of the Orr–Sommerfeld operator. The initial disturbance which can
achieve this kind of growth is a series expansion of all the eigenmodes and typically
is the conjugate adjoint of the leading eigenmode.

In this paper we re-examine the linear stability of two-fluid shear flows from the
perspective of disturbance energy growth. We want to determine the magnitude of the
maximum energy growth possible and show which eigenmodes make up the initial
disturbance which leads to this growth. We anticipate that the interfacial mode will
play a significant role in the determination of energy growth.

In §2 we set up the governing equations for channel flow of two superposed
viscous fluids. We then extend the single-fluid energy equations to include two fluids
but we find that a simple extension of the energy equations leads to problems of
non-convergence. The problems of non-convergence are caused by the interfacial
mode. The behaviour of this mode is totally different from the other eigenmodes.
In particular, in the single-fluid limit of the two-fluid flow configuration (when the
parameters of both fluids are the same), the governing stability equations admit a
solution for the interfacial mode with zero velocity field but an unspecified amplitude
of the disturbed interface. Thus unlike the eigenmodes in single-fluid flows which are
completely defined by the eigenfunction φ(y), the eigenmodes in two-fluid flows are
defined by the three-component vector (φ(y), χ(y), h)T where φ and χ are the eigen-
functions of the Orr–Sommerfeld equations in the upper and lower fluids respectively
and h is the amplitude height of the disturbed interface. In the single-fluid limit of the
two-fluid configuration, this normalized interfacial eigenmode is equal to (0, 0, 1)T .
An Hermitian inner product and corresponding ‘energy’ norm must take into account
the amplitude of the disturbed interface (Y. Renardy, private communication). We
overcome the problem of non-convergence by using an inner product defined by
Renardy (1987a) which explicitly includes the effect of the interfacial amplitude in the
positive definite form of |h|2. This leads to a modified ‘energy’ norm for the two-fluid
system which we call the h-norm. We note that Davis & Homsy (1980) introduce a
similar generalized energy functional in their work on energy stability of free surface
flows, see their equation (7.6).

We know from Hooper & Grimshaw (1996) that in single-fluid flows, the initial
disturbance that leads to maximum growth is closely associated with the adjoint of the
leading eigenmode. In §3, we study eigenmodes of the adjoint Orr–Sommerfeld equa-
tion for two fluids. We find the biorthogonality condition which links the eigenmodes
of the Orr–Sommerfeld equation and the adjoint eigenmodes and note similarities
between this equation, the energy rate equation and the inner product required for
the h-norm. We are thus able to show that the explicit |h|2 term included in the
definition of the h-norm emulates the disturbance energy growth due to the presence
of the interface in two-fluid flows. We conclude from this that the main mechanism
for growth defined by the h-norm must be the Reynolds stress term of the energy
rate equation.

We present results for the energy growth of two-fluid configurations in §4. We
maximize growth using the h-norm and then isolate the growth of the disturbance
kinetic energy from the final result. Good qualitative agreement is found between
single-fluid systems and the corresponding two-fluid configuration when taken to the
single-fluid limit. The agreement is further enhanced by using a simple modification
of the h-norm which still produces convergent results but which places more emphasis
on the kinetic energy component and less emphasis on the |h|2 component of the
h-norm.

We find that the disturbance which leads to maximum energy growth has closed
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Figure 1. The two-fluid flow configuration.

streamlines which are tilted against the mean flow. It seems that this streamline tilting
mechanism enhances transfer of energy via the Reynolds stress to the two-dimensional
disturbance in two-fluid flows. The same mechanism has been found in single-fluid
shear flows.

2. Formulation of the governing equations
The flow consists of two immiscible, incompressible Newtonian fluids of equal

density, one on top of the other between two horizontal plates (see figure 1). The
fluids are of different viscosities (µi) and have different depths (di) where i = 1, 2. We
take surface tension to be zero.

The basic flow is parallel shear flow, u = (Ui(y), 0, 0), i = 1, 2, driven by a constant
pressure difference in the x-direction, see figure 1. The governing equations are non-
dimensionalized with respect to the depth and viscosity of fluid 1 and the maximum
speed of the basic flow (Umax) to give the following parameters of the flow: the
viscosity ratio, m = µ2/µ1; depth ratio, n = d2/d1; and Reynolds number, defined as
R = Umaxd1/ν1. (In previous studies the speed of the interface, U0, has been taken
to be the representative speed of the flow and velocity is non-dimensionalized with
respect to U0 but some flow parameters m and n yield a basic flow where Umax � U0.
This means that the speed of the interface, U0, is not representative of the speed of
the basic flow.) Hence the non-dimensional basic flow is given by

U1(y) =
1

Ũmax

{
1 +

(m− n2)

(n2 + n)
y − (m+ n)

(n2 + n)
y2

}
, 0 6 y 6 1, (2.1a)

U2(y) =
1

Ũmax

{
1 +

(m− n2)

m(n2 + n)
y − (m+ n)

m(n2 + n)
y2

}
, −n 6 y 6 0, (2.1b)

where

Ũmax = 1 +
(m− n2)2

4(n2 + n)(m+ n)
if m > n2

and

Ũmax = 1 +
(m− n2)2

4m(n2 + n)(m+ n)
if m < n2.

We examine two-dimensional disturbances only and assume that the disturbance
has an x and t dependence of the form exp[iα(x − ct)] where α is the dimensionless
wavenumber of the disturbance in the streamwise direction. The streamfunction in
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each fluid, Φk, k = 1, 2, satisfies the Orr–Sommerfeld equations

φiv − 2α2φ′′ + α4φ = iαR[(U1 − c)(φ′′ − α2φ)−U ′′1φ], (2.2a)

χiv − 2α2χ′′ + α4χ =
iαR

m
[(U2 − c)(χ′′ − α2χ)−U ′′2χ], (2.2b)

where the prime indicates differentiation with respect to y, and

{Φk} =

{{φ(y)}eiα(x−ct) in fluid 1
{χ(y)}eiα(x−ct) in fluid 2.

The disturbance is subject to eight boundary conditions which are

φ(1) = φ′(1) = 0, (2.3a)

χ(−n) = χ′(−n) = 0. (2.3b)

There is continuity of velocity and stress at the interface. Thus we require at y = 0

φ(0) = χ(0), (2.3c)

φ′(0) + hU ′1(0) = χ′(0) + hU ′2(0), (2.3d)

φ′′(0) + α2φ(0) = m{χ′′(0) + α2χ(0)}, (2.3e)

φ′′′(0)− 3α2φ′(0) = m
(
χ′′′(0)− 3α2χ′(0)

)
. (2.3f )

The term h in equation (2.3) is the amplitude of the perturbed interface which is
perturbed from y = 0 to y = heiα(x−ct) by the disturbance. The kinematic condition at
the interface gives

h =
φ(0)

c−U(0)
. (2.3g)

We define a new Reynolds number to be R′ = dUmax/ν̄, where d is the half channel
width and ν̄ is the mean averaged kinematic viscosity, to enable comparison between
results for single-fluid flows and two-fluid flows. In terms of our old Reynolds number
(R = d1Umax/ν1),

R′ =
(1 + n)2

2(1 + nm)
R. (2.4)

With the new standard length dimension, d = (d1 + d2)/2, we define a scaled
wavenumber α′ = α(n+ 1)/2. Results for two-fluid flows are presented in terms of R′
and α′.

2.1. The energy method for two-fluid flows

The method used to find the energy growth in two-fluid flows is an extension of the
method used to find energy growth in single-fluid flows (see Hooper & Grimshaw
1996). Let the streamfunction of a general disturbance at fixed value of α be given by
v(y, t)eiαx where

v(y, t) =

K∑
n=0

anΦn(y)e−iαcnt with Φn =

{
φn, y > 0
χn, y < 0.

(2.5)

The functions (φn, χn) are eigenmodes of the equations (2.2a) and (2.2b) with
eigenvalues {cn}. The eigenmode (φ0, χ0) is the interfacial mode and the modes
(φn, χn) for n > 0 can be clearly identified with the shear modes of single-fluid flow as
m→ 1.
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The energy of the disturbances in two-fluid flows leads to the following norm:

‖v‖2
o =

∫ 1

0

∣∣∣∣dφdy
∣∣∣∣2 + α2|φ|2dy +

∫ 0

−n

∣∣∣∣dχdy

∣∣∣∣2 + α2|χ|2dy. (2.6)

Since v(y, t) is written as the finite series expansion of eigenmodes the energy norm,
‖v‖2

o, can be written in the matrix form, a∗E ∗H Ea where

a =

 a1

...
aK

 , E =

 e−iαc1t 0 0

0
. . . 0

0 0 e−iαcKt


and the ijth component of the matrix H is

Hij = (Φi, Φj)o =

∫ 1

0

dφi
dy

dφj
dy

+ α2φiφj dy +

∫ 0

−n
dχi
dy

dχj
dy

+ α2χiχj dy. (2.7)

The greatest possible growth in energy is given by the function G(t) where

G(t) = sup
‖v(0)‖2 6=0

‖v(t)‖2

‖v(0)‖2
; (2.8)

‖v(t)‖2 is defined in (2.6). G(t) is equivalent to finding the largest eigenvalue of the
generalized eigenvalue problem,

E ∗HEa = µHa.

For further details see Reddy & Henningson (1993) and Hooper & Grimshaw (1996).
For single-fluid Poiseuille flow, the eigenvalues are distributed along three branches

(usually denoted A, P and S branches, see Mack 1976) which meet at a confluence
point. Reddy & Henningson noted that in single-fluid Poiseuille flow, G(t) converges
when the finite sum v(y, t) includes all the least stable modes up to and including the
modes around the confluence point of the A, P and S branches. The eigenvalues of
the single-fluid limit of two-fluid Poiseuille flow (m→ 1) are exactly the same as those
for single-fluid Poiseuille flow except that there is an additional eigenvalue at c = U(0)
which is associated with the interface. Eigenvalue plots for two-fluid Poiseuille flow,
when both fluids do not have the same viscosity, have a similar distribution except
that the S branch splits into two almost parallel branches (which we denote S1 and
S2), see figure 2.

The growth function, G(t) for two-fluid flow when m = 2, n = 1, R′ = 1000 and
α′ = 1 is shown in figure 3. Note that G(t) does not converge to a finite limit as
K increases, where K is the number of modes included in the finite sum v(y, t) of
equation (2.5), and non-convergence is most apparent at large time. This problem of
non-convergence is the result of including the interfacial mode in our expression for
v(y, t) in equation (2.5) and is visible for all two-fluid configurations. If we omit the
interfacial mode and construct G(t) from an expression made up of modes 1 · · ·K (as
opposed to 0 · · ·K), where K is sufficiently large to ensure convergence in single-fluid
Poiseuille flow (e.g. K = 20 when αR = 1000), then we recover a convergent curve
G(t) that is similar to the single-fluid energy growth curve. We had anticipated that
the effect of the interface on the energy growth of two-fluid flows would be correctly
included by defining the disturbance v(y, t) to comprise the interfacial eigenmode as
well as the first K leading shear modes. The non-convergence of G(t) shows that
the norm used in its construction is insufficient to find the energy of two-fluid flow.
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Figure 2. Basic flow profile and complex eigenvalues of two-fluid plane Poiseuille flow for two
different flow configurations when R′ = 1000 and α′ = 1: (a) m = 1, n = 1; (b) m = 1
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Figure 3. Non-convergence in the original two-fluid growth function, GK(t) when m = 2, n = 1,
R′ = 1000, α′ = 1 and K denotes the number of modes in the expansion for v(y, t) in equation (2.5).

If we replace the energy norm by the L2 norm we still have the same problem of
non-convergence.

The computational explanation for non-convergence is found by inspection of the
energy matrix H that is constructed when we use single-fluid energy norm. We contrast
H with the matrix produced when we use the two-fluid norm ‖.‖o. A simplified view
of the matrix H constructed using the single-fluid energy norm has the form

H =

(
H1 0

0 I

)
. (2.9)

H1 is a square matrix that includes all of the inner product sums for eigenvectors
that are not orthogonal. Once the rank of H exceeds that of H1, the function G(t)
converges.

All of the two-fluid eigenvalues, other than the interfacial eigenvalue, can be
associated with the single-fluid eigenvalues at equivalent Reynolds number and
wavenumber. The interfacial mode which corresponds to the interfacial eigenvalue is
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a completely different type of mode from that of the shear modes. It is not orthog-
onal with respect to the inner product defined in equation (2.6) to any shear mode.
Therefore for any given two-fluid configuration such as that which is used to generate
figure 3

H =


1 h0

H1 0

hT0
0 I

 , (2.10)

where h0 is a 1× κ vector whose elements are all non-zero (the matrix H is of degree
K+ 1). For the two-fluid growth function to converge, a norm must be chosen to give
a partitioned form of H similar to that shown in equation (2.9).

A physical explanation of the non-convergence of G(t) can be derived from
examination of the energy rate equation. The energy rate equation for two-fluid
flows has the form

d

dt
E(t) = −P (t)− D(t) + I(t). (2.11)

where P (t) is the Reynolds stress term,

Re

{∫ 1

0

u∗1v1

dU1

dy
dy +

∫ 0

−n
u∗2v2

dU2

dy
dy

}
,

D(t) represents the viscous dissipation term

1

R

∫
|eij |2dy

and I(t) represents the transfer of energy to the disturbance due to the presence of
the interface and equals

Re

{
1

R
(u∗2 − u∗1)T12|y=0

}
,

where (ui, vi) is the disturbance velocity of the fluid i and T12 represents the disturbance
tangential stress at the interface. The viscous dissipation term always reduces the
energy of the disturbance but the terms P (t) and I(t) can be either positive or
negative and both represent a mechanism by which the energy of the disturbance can
grow. In previous studies of the energy of two-fluid systems, see Joseph (1988), the
interfacial term has been a particularly difficult term to deal with in that unlike the
Reynolds stress term, it cannot be bounded in terms of the square of the velocity. We
note that it is this term, I(t), which accounts for the energy of the perturbed interface
and hence we want to include a positive definite term related to I(t) in the energy
norm construction of G(t).

In a private communication Yuriko Renardy points out that the problem of
non-convergence is a result of not examining the energy of the whole system and
specifically not including the energy of the perturbed interface in the problem. The
eigenvector in two-fluid problems consist of two important properties: its velocity
field defined by φ(y) and χ(y) and its interfacial amplitude h, defined in (2.3). The
inner product defined in (2.7) does not take into account the interfacial amplitude.
We note that as m→ 1, the velocity field of the interfacial mode tends to zero but its
interfacial amplitude becomes unspecified and can be any constant. Normalization
of the eigenvector gives a unit interfacial height. This problem is discussed by Yih
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Figure 4. Eigenvalue plots (where the dots denote the complex values of cj) for different
values of m and n and corresponding values of Gmax

K when Gmax
K is calculated using 0–K

modes: �; interface mode excluded, N; leading shear mode excluded, •. R′ = 1000 and α′ = 1.
(a) m = 1, n = 1; (b) m = 2, n = 1; (c) m = 10, n = 5.

(1967). We must consider eigenvectors Φ of two-fluid problems as consisting of three
components (φ, χ, h)T . Hence in the single-fluid limit of the two-fluid problem, the
interfacial eigenvector equals (0, 0, 1)T . We define an inner product which makes
explicit use of the extra component in the eigenvector and use the inner product given
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by Renardy (1987a)

(Φj, Φk)h =
(1 + n)

2
(Φj, Φk)o + hjhk. (2.12)

We call the above inner product the h-norm. The factor (1 +n)/2 pre-multiplies the
term (Φi, Φj)o so that ‖v‖2

h at R′, α′, m and n is equal to ‖v‖2
h at R′, α′, 1/m and 1/n.

We have examined the use of other norms, see South (1997) but the h-norm seems
best suited to our purposes because the interfacial term of the h-norm emulates the
interfacial term, I(t), of the energy rate equation. This is discussed in §3.

The h-norm inner product is mathematically well defined and produces a convergent
function G(t), (where G(t) in (2.8) is now defined using the h-norm). This can be seen
in figure 4 where we have shown that in order to find G(t) it is sufficient to include
modes associated with eigenvalues up to and including the confluence of the two-fluid
A, P , S1 and S2 branches in the expression for the general disturbance. Like G(t) for
single-fluid flows, G(t) for two-fluid flows has a local maximum at time t = tmax, which
we denote for future reference by Gmax.

Single-fluid flow results show that Gmax is significantly reduced if the initial dis-
turbance does not include the leading shear mode, see Hooper & Grimshaw (1996).
Results for two-fluid flows reveal that Gmax is significantly reduced by excluding either
the interfacial mode or the leading shear mode, see figure 4. Therefore in two-fluid
flow systems, it is sometimes the leading shear mode that is more important for
growth than the interfacial mode. Of course, because of mode-crossing, it is difficult
to define one particular mode as the interfacial mode when m is significantly different
from unity.

Figure 5 shows the growth function G(t) based upon the h-norm for four different
flows. In figure 5(a), the interfacial mode is neutrally stable and the shear modes are
stable so that as t → ∞, G(t) → C where C is the absolute height of the interface
|a0h0|2. In figure 5(b) the interfacial mode is unstable when n = 1 so G(t) → ∞ as
t→∞.

The effect of changing n on Gmax is shown in figure 6. The h-norm is a modification
of the original energy norm, ‖.‖o, a norm which is directly comparable to the single-
fluid energy norm. The boundary conditions at each wall means that the interfacial
term tends to zero as the interface is brought closer to the wall and we thus expect
that h-norm will yield a function G(t) that is equivalent to the single-fluid function
G(t) as n→∞ or n→ 0. This is confirmed by the results in figure 6.

The h-norm does not represent an energy norm. Davis & Homsy (1980) call the
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Figure 6. Gmax versus n when G(t) is based upon the h-norm, m = 1, R′ = 1000 and α′ = 1. The
dashed line represents the corresponding single-fluid energy norm Gmax value.

h-norm the generalized energy of the system. It is difficult, however, to interpret the
interfacial component of the h-norm in terms of disturbance energy. In §3 we study
the adjoint Orr–Sommerfeld equation and the energy rate for two-fluid flows. We
examine similarities between the interfacial terms of the h-norm, the biorthogonality
condition for the Orr–Sommerfeld eigenmodes and the adjoint eigenmodes, and the
energy rate equation. From the observed similarities we conclude that the h-norm
reflects the energy of the whole system of two-fluid flows in that it includes both the
kinetic energy of the disturbance velocity field of the two fluids and a term which
represents the energy that can be transferred to the disturbance due to the presence
of the interface.

3. The adjoint system and energy rate equation for two-fluid flows
In single-fluid flows, the disturbance which maximizes the energy at large time is

φ̂1, the adjoint of the leading eigenvector φ1 (see Hooper & Grimshaw 1996). The
adjoint eigenvector can be found from matrix inversion and is given by

φ̂1 = Uâ1 where â1 = H−1e1 (3.1)

where H is the matrix constructed using the energy inner product for single-fluid flows
and e1 is the unit vector (1, 0, 0, . . . , 0)T .

The adjoint eigenfunction can also be found from the solution of the adjoint
Orr–Sommerfeld equation,

ψiv − α2ψ′′ + α4ψ = iαR{(U − c)(D2 − α2)ψ + 2U ′ψ′}, (3.2)

with

ψ(±1) = ψ′(±1) = 0.
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Figure 7. Streamfunction contour plots of (a) the conjugate of the leading adjoint mode and (b)
the initial disturbance which leads to G(t) when t is large (t = 80) for single-fluid plane Poiseuille
flow disturbances when R = 1000 and α = 1.

The eigenfunctions {φj} of the Orr–Sommerfeld equation and the adjoint eigen-
functions {ψk} satisfy the following biorthogonality condition:∫ 1

−1

φj(D
2 − α2)ψkdy = δjk. (3.3)

The integral in equation (3.3) is equivalent to the energy inner product (φj, ψk)0.

Hence the adjoint eigenvector, φ̂1 found from matrix inversion (see equation (3.1))
and the leading adjoint eigenvector of (3.2) are the same. This is illustrated in figure 7
where we see that the leading adjoint mode is the same as the disturbance associated
with maximum energy growth at large time.

The two-fluid adjoint stability equations when both fluids have the same density
and surface tension is zero are

ψiv − 2α2ψ′′ + α4ψ = iαR{(U1 − c)(D2 − α2)ψ + 2U ′1ψ
′}, (3.4)

ωiv − 2α2ω′′ + α4ω =
irαR

m
{(U2 − c)(D2 − α2)ω + 2U ′2ω

′}, (3.5)

ψ(1) = ψ′(1) = ω(−n) = ω′(−n) = 0, (3.6a)

ψ(0) = ω(0), (3.6b)

ψ′(0) = ω′(0), (3.6c)

ψ′′(0) + α2ψ(0) = m{ω′′(0) + α2ω(0)}, (3.6d)

(ψ
′′′
(0)− 3α2ψ′(0))− U ′1(0)

(U(0)− c) (ψ′′(0) + α2ψ(0))

= m

{
(ω

′′′
(0)− 3α2ω′(0))− U ′2(0)

(U(0)− c) (ω′′(0) + α2ω(0))

}
, (3.6e)

where ψ is the adjoint function in the upper fluid and ω is the adjoint function in
the lower fluid.

The original and adjoint eigenfunctions are related through the biorthogonality
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condition which for two-fluid flows is∫ 1

0

DφjDψk + α2φjψkdy +

∫ 0

−n
DχjDωk + α2χjωkdy

+
1

iαR

(Dφj −Dχj)

(U0 − ck) (D2ψk + α2ψk)|y=0 = δjk. (3.7)

The left-hand side of (3.7) defines an inner product (Φ,Ψ )b, where Φ = (φ, χ) and
Ψ = (ψ,ω). The inner product used in the construction of the h-norm, see equation
(2.12), is similar to the inner product (Φj, Φk)b. This becomes clear when we use the
boundary conditions of (2.3) and the kinematic condition, (2.3) to show that the
interfacial term of (Φj, Φk)b,

1

iαR

(Dφj −Dχj)

(U0 − ck) (D2φk + α2φk)|y=0, (3.8)

can be written in the form

Mkhjhk, (3.9)

where

Mk =
1

iαR
(U ′1 −U ′2) (D2φk + α2φk)

φk

∣∣∣∣
y=0

. (3.10)

The inner product used in the construction of the h-norm is equivalent to the inner
product defined by (Φj, Φk)b with Mk replaced by unity ∀k. Because of this similarity
between (Φj, Φk)b and (Φj, Φk)h used in the construction of the h-norm, we expect at
large time the disturbance that gives maximum growth using the h-norm to be very
similar to the leading adjoint eigenmode. Figure 8 shows that this is indeed true.

We also note that there is a clear similarity between the interfacial term of (Φj, Φk)b
of (3.8) and the interfacial term, I(t), of the energy rate equation. This is more
apparent when I(t) is written in terms of the disturbance streamfunction and given
by

Re

{
1

R
(Dψ −Dφ)(D2φ+ α2φ)|y=0

}
. (3.11)

Both interfacial terms, I(t) and (3.8), arise when one integrates across the linearized
interface at y = 0 and are due to the discontinuity in viscosity at that point. The
multiplicative term, 1/iα(U0 − ck), which appears in (3.8) but not in I(t) is related
to the operator (d/dt)−1 which is the operator required to transform the energy rate
equation into an energy equation.

Because the two terms arise in an identical way and are so similar, it seems
reasonable to conclude that the interfacial term of the inner product, (Φj, Φk)b contains
the energy transferred to the disturbance via the interface. This term can be either
positive or negative. It is replaced in the h-norm by the positive definite term M|h|2
where M is 1. Smaller values of M would place less emphasis on the interfacial
energy component as compared to the kinetic energy component of G(t). The close
similarity as shown in figure 8, however, between the initial disturbance that leads to
G(t) at large time and the leading adjoint eigenmode shows that a choice of M = 1 is
reasonable for the flow parameters chosen. The values of Mk for the eigenfunctions
of the two-fluid Orr–Sommerfeld equation when α′ = 1, R′ = 1000, m = 2 and n = 1, 2
are found to be O(10−1) for eigenfunctions with eigenvalues along the S1 and S2

branches of the eigenvalue distribution, see figure 4, and O(10−2) for eigenfunctions
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Figure 8. Streamfunction contour plots of (a) the conjugate of the leading two-fluid adjoint mode
and (b) the initial disturbance which leads to G(t) (defined using the h-norm) for large time (t = 80)
for two-fluid plane Poiseuille flow disturbances when R′ = 1000, α′ = 1 and different values of m
and n.

with eigenvalues scattered above the S1 and S2 branches. This suggests that values of
M of less than 1 would also lead to convergent results and that these results would
be quantitatively closer to the maximum kinetic energy growth of the disturbance.
This is explored in §4.

An inspection of the energy rate equation shows that one would expect the Reynolds
stress mechanism and not the interfacial term, I(t), to lead to a growth in G(t). This
is because most of the energy growth due to I(t) in the energy rate equation has been
incorporated into G(t) by use of the h-norm. In §4 we consider two initial disturbances
that give maximum energy growth. We calculate I(t) for these disturbances and show
that I(t) is negligible for all time. This supports the expectation that the mechanism
for energy growth in G(t) is the Reynolds stress only.

4. Results
The function G(t) defined using the h-norm consists of two components: the kinetic

energy growth within both fluids and the interfacial growth. We wish to examine the
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Figure 9. Comparing single-fluid G(t) (line (i)) and two-fluid B(t) (line (ii)), (a) as calculated with
the h-norm and (b) as calculated with the modified h-norm for M = 0.1. For all curves, R = 1000,
α = 1 and in the two-fluid configurations, m = 1 and n = 1.

growth of the kinetic energy component separately. Thus we note that the h-norm
can be written in the following way:

‖v(y, t)‖2
h =

(1 + n)

2

{∫ 1

0

∣∣∣∣∂v1

∂y

∣∣∣∣2+α2|v1|2dy +

∫ 0

−n

∣∣∣∣∂v2

∂y

∣∣∣∣2+α2|v2|2dy
}

+ |v3|2, (4.1)

where

v1 =

K∑
p=1

apφp(y)e−iαcpt, v2 =

K∑
p=1

apχp(y)e−iαcpt, v3 =

k∑
p=1

aphpe
−iαcpt

and (φp(y), χp(y), hp)
T is the compound eigenvector of the two-fluid Orr–Sommerfeld

equations defined in §2.1. Once G(t) and hence {ap} are known we can isolate each
term v1, v2, v3 that make up G(t).

We define a scaled kinetic energy growth function B(t) which is normalized with
respect to the initial kinetic energy so that

B(t) =
G(t)− |v3(t)|2
G(0)− |v3(0)|2 . (4.2)

The function B(t) allows us to compare energy growth of the two-fluid system with
energy growth in the single-fluid system. Of course the energy growth found may
not be the maximum kinetic energy growth possible in the two-fluid system because
the function maximized involves kinetic energy plus an interfacial |h|2 term, but the
comparison does give some indication of possible kinetic energy growth in two-fluid
systems. Despite this caveat, B(t) in the single-fluid limit compares well with the
single-fluid energy growth function G(t) as can be seen in figure 9(a). The two graphs
do not quantitatively match because the h-norm is not simply a kinetic energy norm
but they do match qualitatively. This qualitative match is maintained wherever the
interface is positioned (in figure 9 it is in the centre of the channel) although Bmax

does show approximately 10% variation with n. Closer agreement is found when the
inner product of the h-norm is modified to

(Φj, Φk)h =
(1 + n)

2
(Φj, Φk)o +Mhjhk (4.3)

with M less than 1. Care must be taken so that the norm ‖v(t)‖ defined with the above
inner product converges once the series expansion for v(t) includes a finite number
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Figure 10. Energy growth function B(t) defined using the modified h-norm of (4.3) when R′ = 1000,
α′ = 1, m = 2, n = 1 and (i) M = 1, (ii) M = 0.1, (iii) M = 0.02. The modifed h-norm growth
function G(t) with M = 0.02 is shown in curve (iv). Note that the interfacial mode is unstable for
these flow parameters and so all curves (i)–(iv) will grow as t→∞.

of terms. We already know that M = 0 leads to problems of non-convergence. Study
of the inner product associated with the biorthogonality condition, (Φj, Φk)b, suggests
that values of M between 0.01 and 0.1 should produce a convergent norm when
α′ = 1, R′ = 1000, m = 2 and n = 1, 2. We find that this is indeed the case. As
expected, as M becomes smaller, more emphasis is placed on the kinetic energy
growth of the disturbance and when m = 1, B(t) approaches the single-fluid energy
growth function G(t), as can be seen in figure 9(b) with M = 0.1. As pointed out
by a referee, (3.10) suggests that we choose a value of M which is proportional to
(m − 1), so that when m = 1 the weighting given to the interface vanishes. We have
not explored this option but it seems a sensible way to proceed. We have shown,
however, that even with a non-zero value of M, one can almost recover the true
values of energy growth, as shown in figure 9, as long as M is sufficiently small.

We also look at the two-fluid configuration when m = 2 and n = 1 at R′ = 1000
and α′ = 1. Figure 10 shows the corresponding kinetic energy growth function B(t)
found using the modified h-norm when M is 1, 0.1 and 0.02. Again, as M becomes
smaller, more emphasis is placed on the kinetic energy growth component of G(t) and
less emphasis on the interfacial term of G(t). Furthermore, the two curves, G(t) and
B(t), calculated using the h-norm when M is 0.02 are almost identical in the transient
growth phase, see lines (iii) and (iv) of figure 10. In figure 11 we show growth curves
for the two-fluid flow when R′ = 1000, α′ = 1, m = 10 and n = 5 (compare figure 13).
Figure 11 shows three lines: lines (i) and (ii) are respectively G(t) and B(t) calculated
using the modified h-norm when M = 0.02 and line (iii) is G(t) calculated using the
original energy norm of equation (2.6) when the interfacial mode is excluded. We see
that all three curves are extremely close. We have found similar results in the transient
growth phase of other flows such as the flow configuration of figure 10 (when m = 2,
n = 1, R′ = 1000 and α′ = 1). For the two-fluid flows studied here, the transient
energy growth is a shear mode phenomenon and the presence of the interfacial mode
is of secondary importance.

The maximum energy growth of a disturbance must lie between the curves G(t)
and B(t) calculated using the modified h-norm. As M → 0, the curves G(t) and B(t)
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Figure 11. Disturbance growth for two-fluid flow when R′ = 1000, α′ = 1, m = 10 and n = 5. Lines
(i) and (ii) are the curves G(t) and B(t), respectively, calculated using the modified h-norm when
M = 0.02. Line (iii) is G(t) calculated using the original energy norm when the interfacial mode is
excluded from the disturbance.
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Figure 12. (a) Gmax(R′, α′) contours for single-fluid plane Poiseuille flow and (b) two-fluid Bmax(R′, α′)
contours for the single fluid limit (m = 1) when n = 1. (The wiggles apparent on some of the contour
lines are believed to be a numerical artefact.)
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Figure 13. Bmax(m, n) contours, R′ = 1000 and α′ = 1: �, minimum found at m ≈ 1.6, n ≈ 7.4;
4, maximum found at m = 10 and n = 5.

tend to coalesce. If M becomes too small, however, problems with non-convergence
re-emerge. The smallest value of M will depend on the flow parameters of the system.
We conclude that the modified h-norm with M chosen to be the smallest value of M
to ensure convergent results is representative of the energy norm for two-fluid flows
if the calculated curves for G(t) and B(t) are sufficiently close (as is the case with lines
(iii) and (iv) of figure 10 for t < 20 when M = 0.02 and lines (i) and (ii) of figure 11,
∀t). We note, however, that the qualitative behaviour of the results in the transient
growth phase is the same whether the modified or unmodified h-norm is used. All
further results in this section are presented for the unmodified h-norm with M = 1.

The similarity of B(t) and single-fluid G(t) is further emphasized in figure 12 which
shows Gmax(R′, α′) for single-fluid plane Poiseuille flow and Bmax(R′, α′) in the single-
fluid limit of the two-fluid configuration. As with single-fluid G(t) there are regions
of no energy growth (at low Reynolds number) and the wavenumber at which most
growth is found is approximately 2.

In figure 13, Bmax contours in the (m, n)-plane are shown for fixed values of R′
and α′. There is a maximum of the Bmax contours at m > 10 and n ≈ 5 and a
minimum at n = 7.4 and m = 1.6. The streamfunctions of the disturbances associated
with the maximum and minimum Bmax disturbances are given in figure 14. Both
disturbances show circulation around the interface but the disturbance associated
with the largest growth (figure 14a) also has separate circulation ‘cells’ at the channel
walls. These wall circulation ‘cells’ oppose the velocity gradient of the basic flow.
Similar wall circulation structures are found in single-fluid flow (see figure 7) where
they are most pronounced for the disturbance that creates most transient growth
(with fixed R′) at α′ ≈ 2. The disturbance that produces least energy growth (as shown
in figure 14b) shows much weaker wall circulation structures. It is likely that the
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Figure 14. Streamfunction contour plots at R′ = 1000, α′ = 1 for the disturbances that lead to
(a) Bmax when m = 10 and n = 5 and (b) Bmax when m = 1.6 and n = 7.4.
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Figure 15. The interfacial term of the energy equation I(t) when R′ = 1000, α′ = 1: (a) m = 10, n = 5
and (b) m = 1.6, m = 7.4. The dashed line refers to I(t) when the initial disturbance comprises a
series expansion of eigenmodes which lead to Bmax (see figure 14) and the solid line refers to I(t)
when the initial disturbance comprises the interfacial mode only.

two-fluid disturbance which grows the most uses this streamline tilting mechanism
which is also apparent in single-fluid flows.

We calculate I(t) for the two configurations highlighted in figure 13. Figure 15
shows I(t) for two disturbances: I0 made up of the interfacial mode only and IK ,
the modal sum whose energy grows to Bmax. When the disturbance is defined as a
series expansion of modes (as in IK(t)) we see in figure 15(a) that the interfacial term
can act to increase or decrease the rate of change of kinetic energy as a function of
time. In figure 15(a) I0(t) and IK(t) are O(10−4) whereas the disturbance that leads to
Bmax requires an energy growth rate of O(10−1). The same difference in magnitudes is
found at the configuration for which figure 15(b) is drawn.

We conclude from the above results that the Reynolds stress term of the energy rate
equation is the most important energy growth mechanism for non-modal disturbances
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in two-fluid flows. The energy transfer caused by the Reynolds stress is enhanced by
the streamline tilting apparent in the streamline plots of the disturbance. This is the
same mechanism found for energy transfer in transient growth of single-fluid flows.
We also conclude, for the two-fluid flows studied in this paper, that the transient
energy growth is a shear mode phenomenon and that the presence of the interfacial
mode is of secondary importance.
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